入剑桥大学。哈代有一次去探望病中的拉曼纽扬时对他讲,自己刚才乘坐的出租
汽车车号1729似乎没有什么意义,但愿它不是一个不祥的预兆。拉曼纽扬却回答:
“不,这是一个很有意思的数,1729是可以用两种方式表示成两个自然数立方和
的最小的数(既等于1的三次方加上12的三次方,又等于9的三次方加上10的三次
方)。哈代又问,那么对于四次方来说,这个最小数是多少呢?拉曼纽扬想了想,
回答说:“这个数很大,答案是635318657。”(既等于59的四次方加上158的四
次方,又等于133的四次方加上134的四次方)
《算术研究》:数论的法典
1801年,年仅24岁的出版了《算术研究》,从而开创了现代数论的新纪
元。书中出现了有关正多边形的作图,方便的同余记号以及优美的二次互反律的
首次证明等。这部伟大的著作曾经寄到法国科学院而被拒绝,但自己把它发
表了。和的前期作品一样,它是用拉丁文写的,这是当时科学界的世界语,
然而由于受十九世纪初国家主义的影响,后来改用德文写作。如果他和其他
研究者坚持使用拉丁文,也许今日我们就可以免除语言上的困扰了。在那个世纪
的末端,集合论的创始人康托这样评价:
《算术研究》是数论的宪章。总是迟迟不肯发表他的著作,这给科学带
来的好处是,他付印的著作在今天仍然像第一次出版时一样正确和重要,他的出
版物就是法典。比人类其它法典更高明,因为不论何时何地从未发觉出其中有任
何一处毛病,这就可以理解暮年谈到他青年时代第一部巨著时说的话:
“《算术研究》是历史的财富。”他当时的得意心情是颇有道理的。
关于《算术研究》,还流传着这样一个故事,1849年7月16日,哥廷根大学
为获得博士学位五十周年举行庆祝会。当进行到某一程序时,准备用
《算术研究》的一张原稿点烟,当时在场的数学家狄里克雷(后来继承了的
职位),像见到渎圣行为一样吃了一惊,他立刻冒失地从手中抢下这一页纸,
并一生珍藏它;他的编辑者在他死后从他的论文中间找到了这张原稿。
和艺术家一样,希望他留下的都是十全十美的艺术珍品,任何丝毫的改
变都将破坏其内部的均衡。他常说:“当一幢建筑物完成时,应该把脚手架拆除
干净。”对于严密性的要求也非常苛刻,使得一个定理从直觉的形式到完整
的数学证明,中间有一段很长的过程。此外,十分讲究组织结构,他希望在
每一个领域中,都能树立起一致而普遍的理论,从而将不同的定理联系起来。鉴
于上述原因,很不乐意公开发表他的东西。他的著名的警句是:宁肯少些,
但要成熟。为此,付出了高昂的代价,包括把非欧几何学和最小二乘法的发
明权让给了罗巴切夫斯基、鲍耶和勒让德,就如同费尔马把解析几何和微积分的
发明权让给了笛卡尔和牛顿、莱布尼兹。
从做出有关正多边形发现的那天起,开始了著名的数学日记,他以密码
式的文字记载下许多伟大的数学发现。的这本日记直到1898年才被找到,它
包括146条很短的注记,其中有数值计算结果,也有简单的数学定理。例如,关
于正多边形作图问题,在日记中写到:
圆的分割定律,如何以几何方法将圆十七等分。
又如1796年7月10日的记载,
num=△+△+△
意指“每个自然数都是三个三角形数之和”。就像莫扎特一样,年轻时
候风起云涌的奇思妙想使他来不及做完一件事,另一件又出现了。
多才多艺
不仅是数学家,还是那个时代最伟大的物理学家和天文学家之一。在
《算术研究》问世的同一年,即1801年的元旦,一位意大利天文学家在西西里岛
观察到在白羊座(aries)附近有光度八等的星移动,这颗现在被称作谷神星
(ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下
没了踪影。当时天文学家无法确定这颗新星是彗星还是行星,这个问题很快成了